匠心精神 - 良心品质腾讯认可的专业机构-IT人的高薪实战学院

咨询电话:4000806560

Golang实现机器学习:使用Gorgonia构建神经网络模型

Golang实现机器学习:使用Gorgonia构建神经网络模型

机器学习是当下最为热门的技术领域之一。而实现机器学习最重要的一步就是构建模型。Gorgonia是一个基于Go语言的神经网络库,可以帮助开发者更加便捷地构建神经网络模型。

在本文中,我们将使用Gorgonia构建一个用于手写数字识别的神经网络模型。本文着重介绍神经网络模型的构建过程,并详细解释其中的技术知识点。

1.准备工作

在开始构建神经网络模型之前,我们需要准备好环境。首先,需要安装Gorgonia库。可以通过以下命令进行安装:

```go get gorgonia.org/gorgonia```

安装好之后,我们需要先定义数据的输入和输出。在本例中,我们将使用手写数字数据集Mnist。Mnist数据集一共有60,000个训练数据和10,000个测试数据,每个数据都是28x28的灰度图像。我们希望神经网络能够根据这些图像输出对应的数字。

```go
//定义输入和输出
var (
    inputSize  = 28 * 28
    outputSize = 10
)
```

2.构建神经网络模型

定义好输入和输出之后,我们开始构建神经网络模型。在本例中,我们将使用一个简单的全连接神经网络模型。模型的输入层有28x28个神经元,输出层有10个神经元。

```go
//构建神经网络模型
func buildModel(g *gorgonia.ExprGraph) (w0, w1, b0, b1 *gorgonia.Node) {
    //输入层有28*28个神经元
    input := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(-1, inputSize), gorgonia.WithName("x"))
    //标签
    labels := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(-1, outputSize), gorgonia.WithName("y"))
    //隐藏层有256个神经元
    hiddenSize := 256
    //第一层权重
    w0 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(inputSize, hiddenSize), gorgonia.WithName("w0"))
    //第二层权重
    w1 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(hiddenSize, outputSize), gorgonia.WithName("w1"))
    //第一层偏置
    b0 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(1, hiddenSize), gorgonia.WithName("b0"))
    //第二层偏置
    b1 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(1, outputSize), gorgonia.WithName("b1"))
    //第一层
    var h0, h1 *gorgonia.Node
    gorgonia.Mul(input, w0, &h0)
    gorgonia.Add(h0, b0, &h0)
    gorgonia.Rectify(h0)
    //输出层
    gorgonia.Mul(h0, w1, &h1)
    gorgonia.Add(h1, b1, &h1)
    gorgonia.SoftMax(h1)
    //损失函数
    cost := gorgonia.Must(gorgonia.Neg(gorgonia.Must(gorgonia.Mean(gorgonia.Must(gorgonia.Sum(gorgonia.Must(gorgonia.HadamardProd(labels, gorgonia.Must(gorgonia.Log(h1))))))))))
    //记录输出,方便后面预测结果
    gorgonia.Read(h1, &output)
    //训练误差
    var loss *gorgonia.Node
    gorgonia.Mean(gorgonia.Must(gorgonia.Norm(gorgonia.Must(gorgonia.Sub(h1, labels)), 2)), &loss)
    //梯度下降
    if _, err := gorgonia.Grad(cost, w0, w1, b0, b1); err != nil {
        log.Fatal(err)
    }
    return w0, w1, b0, b1
}
```

3.训练模型

构建好神经网络模型之后,我们需要训练模型以提高准确率。在本例中,我们将使用随机梯度下降算法进行训练。随机梯度下降算法是一种常用的优化算法,用来找到损失函数的最小值。在每次迭代中,算法会计算模型预测值与真实值之间的误差,并通过反向传播算法更新模型参数。

```go
//训练神经网络模型
func trainModel(model *gorgonia.ExprGraph, machine *gorgonia.VM, w0, w1, b0, b1 *gorgonia.Node, trainData []*mnist.RawImage, trainLabels []*mnist.RawImage, batchSize int, epochs int) {
    //批量梯度下降的批量大小
    var iterations = len(trainData) / batchSize
    //定义随机梯度下降优化器
    var sgdSolver = &gorgonia.SGD{LearnerRate: 0.1}
    //训练模型
    for i := 0; i < epochs; i++ {
        var loss float64
        for j := 0; j < iterations; j++ {
            startIdx := j * batchSize
            endIdx := (j + 1) * batchSize
            if endIdx > len(trainData) {
                endIdx = len(trainData)
            }
            //构建输入数据
            inputVals := make([]float64, (endIdx-startIdx)*inputSize)
            labelVals := make([]float64, (endIdx-startIdx)*outputSize)
            idx := 0
            for k := startIdx; k < endIdx; k++ {
                img := trainData[k]
                label := trainLabels[k]
                for _, p := range img.Data {
                    inputVals[idx] = float64(p) / 255.0
                    idx++
                }
                for _, p := range label.Data {
                    labelVals[idx-outputSize] = float64(p)
                    idx++
                }
            }
            inputs := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(endIdx-startIdx, inputSize), gorgonia.WithBacking(inputVals))
            labels := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(endIdx-startIdx, outputSize), gorgonia.WithBacking(labelVals))
            //定义损失函数
            _, err := machine.RunAll()
            if err != nil {
                log.Fatal("Failed to run the machine ", err)
            }
            //反向传播算法更新参数
            if err = sgdSolver.Step(gorgonia.NodesToValueGrads(w0, w1, b0, b1)); err != nil {
                log.Fatal("Failed to update parameters ", err)
            }
            loss += lossVal.Data().(float64)
        }
        fmt.Println("Epoch ", i+1, " completed. Loss = ", loss/float64(iterations))
    }
}
```

4.预测结果

训练好模型之后,我们可以用它来预测手写数字图像所代表的数字。在本例中,我们将使用测试集中的图像进行预测,并将结果与实际值进行比较。

```go
//预测结果
func predict(model *gorgonia.ExprGraph, machine *gorgonia.VM, w0, w1, b0, b1 *gorgonia.Node, testData []*mnist.RawImage, testLabels []*mnist.RawImage) {
    var correct int
    for i, img := range testData {
        label := testLabels[i]
        inputVals := make([]float64, inputSize)
        idx := 0
        for _, p := range img.Data {
            inputVals[idx] = float64(p) / 255.0
            idx++
        }
        inputs := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(1, inputSize), gorgonia.WithBacking(inputVals))
        //前向传播
        _, err := machine.RunAll()
        if err != nil {
            log.Fatal(err)
        }
        //获取预测值
        maxVal := -math.MaxFloat64
        maxIdx := -1
        fmt.Print("Predicted: ")
        for j := 0; j < outputSize; j++ {
            val := output.Data().(tensor.Shape)[j]
            fmt.Print(val, " ")
            if val > maxVal {
                maxVal = val
                maxIdx = j
            }
        }
        fmt.Print("   Actual: ", label.Data[0], "\n")
        if maxIdx == int(label.Data[0]) {
            correct++
        }
    }
    fmt.Println("Accuracy: ", float64(correct)/float64(len(testData))*100, "%")
}
```

5.完整代码

```go
package main

import (
    "fmt"
    "log"
    "math"
    "math/rand"
    "time"

    "gorgonia.org/gorgonia"
    "gorgonia.org/tensor"

    "github.com/petar/GoMNIST"
)

var (
    inputSize  = 28 * 28
    outputSize = 10
    output     *gorgonia.Node
)

func buildModel(g *gorgonia.ExprGraph) (w0, w1, b0, b1 *gorgonia.Node) {
    input := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(-1, inputSize), gorgonia.WithName("x"))
    labels := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(-1, outputSize), gorgonia.WithName("y"))
    hiddenSize := 256
    w0 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(inputSize, hiddenSize), gorgonia.WithName("w0"))
    w1 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(hiddenSize, outputSize), gorgonia.WithName("w1"))
    b0 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(1, hiddenSize), gorgonia.WithName("b0"))
    b1 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(1, outputSize), gorgonia.WithName("b1"))
    var h0, h1 *gorgonia.Node
    gorgonia.Mul(input, w0, &h0)
    gorgonia.Add(h0, b0, &h0)
    gorgonia.Rectify(h0)
    gorgonia.Mul(h0, w1, &h1)
    gorgonia.Add(h1, b1, &h1)
    gorgonia.SoftMax(h1)
    cost := gorgonia.Must(gorgonia.Neg(gorgonia.Must(gorgonia.Mean(gorgonia.Must(gorgonia.Sum(gorgonia.Must(gorgonia.HadamardProd(labels, gorgonia.Must(gorgonia.Log(h1))))))))))
    gorgonia.Read(h1, &output)
    var loss *gorgonia.Node
    gorgonia.Mean(gorgonia.Must(gorgonia.Norm(gorgonia.Must(gorgonia.Sub(h1, labels)), 2)), &loss)
    if _, err := gorgonia.Grad(cost, w0, w1, b0, b1); err != nil {
        log.Fatal(err)
    }
    return w0, w1, b0, b1
}

func trainModel(model *gorgonia.ExprGraph, machine *gorgonia.VM, w0, w1, b0, b1 *gorgonia.Node, trainData []*mnist.RawImage, trainLabels []*mnist.RawImage, batchSize int, epochs int) {
    var iterations = len(trainData) / batchSize
    var sgdSolver = &gorgonia.SGD{LearnerRate: 0.1}
    for i := 0; i < epochs; i++ {
        var loss float64
        for j := 0; j < iterations; j++ {
            startIdx := j * batchSize
            endIdx := (j + 1) * batchSize
            if endIdx > len(trainData) {
                endIdx = len(trainData)
            }
            inputVals := make([]float64, (endIdx-startIdx)*inputSize)
            labelVals := make([]float64, (endIdx-startIdx)*outputSize)
            idx := 0
            for k := startIdx; k < endIdx; k++ {
                img := trainData[k]
                label := trainLabels[k]
                for _, p := range img.Data {
                    inputVals[idx] = float64(p) / 255.0
                    idx++
                }
                for _, p := range label.Data {
                    labelVals[idx-outputSize] = float64(p)
                    idx++
                }
            }
            inputs := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(endIdx-startIdx, inputSize), gorgonia.WithBacking(inputVals))
            labels := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(endIdx-startIdx, outputSize), gorgonia.WithBacking(labelVals))
            _, err := machine.RunAll()
            if err != nil {
                log.Fatal("Failed to run the machine ", err)
            }
            if err = sgdSolver.Step(gorgonia.NodesToValueGrads(w0, w1, b0, b1)); err != nil {
                log.Fatal("Failed to update parameters ", err)
            }
            loss += lossVal.Data().(float64)
        }
        fmt.Println("Epoch ", i+1, " completed. Loss = ", loss/float64(iterations))
    }
}

func predict(model *gorgonia.ExprGraph, machine *gorgonia.VM, w0, w1, b0, b1 *gorgonia.Node, testData []*mnist.RawImage, testLabels []*mnist.RawImage) {
    var correct int
    for i, img := range testData {
        label := testLabels[i]
        inputVals := make([]float64, inputSize)
        idx := 0
        for _, p := range img.Data {
            inputVals[idx] = float64(p) / 255.0
            idx++
        }
        inputs := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(1, inputSize), gorgonia.WithBacking(inputVals))
        _, err := machine.RunAll()
        if err != nil {
            log.Fatal(err)
        }
        maxVal := -math.MaxFloat64
        maxIdx := -1
        fmt.Print("Predicted: ")
        for j := 0; j < outputSize; j++ {
            val := output.Data().(tensor.Shape)[j]
            fmt.Print(val, " ")