Golang实现机器学习:使用Gorgonia构建神经网络模型 机器学习是当下最为热门的技术领域之一。而实现机器学习最重要的一步就是构建模型。Gorgonia是一个基于Go语言的神经网络库,可以帮助开发者更加便捷地构建神经网络模型。 在本文中,我们将使用Gorgonia构建一个用于手写数字识别的神经网络模型。本文着重介绍神经网络模型的构建过程,并详细解释其中的技术知识点。 1.准备工作 在开始构建神经网络模型之前,我们需要准备好环境。首先,需要安装Gorgonia库。可以通过以下命令进行安装: ```go get gorgonia.org/gorgonia``` 安装好之后,我们需要先定义数据的输入和输出。在本例中,我们将使用手写数字数据集Mnist。Mnist数据集一共有60,000个训练数据和10,000个测试数据,每个数据都是28x28的灰度图像。我们希望神经网络能够根据这些图像输出对应的数字。 ```go //定义输入和输出 var ( inputSize = 28 * 28 outputSize = 10 ) ``` 2.构建神经网络模型 定义好输入和输出之后,我们开始构建神经网络模型。在本例中,我们将使用一个简单的全连接神经网络模型。模型的输入层有28x28个神经元,输出层有10个神经元。 ```go //构建神经网络模型 func buildModel(g *gorgonia.ExprGraph) (w0, w1, b0, b1 *gorgonia.Node) { //输入层有28*28个神经元 input := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(-1, inputSize), gorgonia.WithName("x")) //标签 labels := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(-1, outputSize), gorgonia.WithName("y")) //隐藏层有256个神经元 hiddenSize := 256 //第一层权重 w0 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(inputSize, hiddenSize), gorgonia.WithName("w0")) //第二层权重 w1 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(hiddenSize, outputSize), gorgonia.WithName("w1")) //第一层偏置 b0 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(1, hiddenSize), gorgonia.WithName("b0")) //第二层偏置 b1 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(1, outputSize), gorgonia.WithName("b1")) //第一层 var h0, h1 *gorgonia.Node gorgonia.Mul(input, w0, &h0) gorgonia.Add(h0, b0, &h0) gorgonia.Rectify(h0) //输出层 gorgonia.Mul(h0, w1, &h1) gorgonia.Add(h1, b1, &h1) gorgonia.SoftMax(h1) //损失函数 cost := gorgonia.Must(gorgonia.Neg(gorgonia.Must(gorgonia.Mean(gorgonia.Must(gorgonia.Sum(gorgonia.Must(gorgonia.HadamardProd(labels, gorgonia.Must(gorgonia.Log(h1)))))))))) //记录输出,方便后面预测结果 gorgonia.Read(h1, &output) //训练误差 var loss *gorgonia.Node gorgonia.Mean(gorgonia.Must(gorgonia.Norm(gorgonia.Must(gorgonia.Sub(h1, labels)), 2)), &loss) //梯度下降 if _, err := gorgonia.Grad(cost, w0, w1, b0, b1); err != nil { log.Fatal(err) } return w0, w1, b0, b1 } ``` 3.训练模型 构建好神经网络模型之后,我们需要训练模型以提高准确率。在本例中,我们将使用随机梯度下降算法进行训练。随机梯度下降算法是一种常用的优化算法,用来找到损失函数的最小值。在每次迭代中,算法会计算模型预测值与真实值之间的误差,并通过反向传播算法更新模型参数。 ```go //训练神经网络模型 func trainModel(model *gorgonia.ExprGraph, machine *gorgonia.VM, w0, w1, b0, b1 *gorgonia.Node, trainData []*mnist.RawImage, trainLabels []*mnist.RawImage, batchSize int, epochs int) { //批量梯度下降的批量大小 var iterations = len(trainData) / batchSize //定义随机梯度下降优化器 var sgdSolver = &gorgonia.SGD{LearnerRate: 0.1} //训练模型 for i := 0; i < epochs; i++ { var loss float64 for j := 0; j < iterations; j++ { startIdx := j * batchSize endIdx := (j + 1) * batchSize if endIdx > len(trainData) { endIdx = len(trainData) } //构建输入数据 inputVals := make([]float64, (endIdx-startIdx)*inputSize) labelVals := make([]float64, (endIdx-startIdx)*outputSize) idx := 0 for k := startIdx; k < endIdx; k++ { img := trainData[k] label := trainLabels[k] for _, p := range img.Data { inputVals[idx] = float64(p) / 255.0 idx++ } for _, p := range label.Data { labelVals[idx-outputSize] = float64(p) idx++ } } inputs := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(endIdx-startIdx, inputSize), gorgonia.WithBacking(inputVals)) labels := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(endIdx-startIdx, outputSize), gorgonia.WithBacking(labelVals)) //定义损失函数 _, err := machine.RunAll() if err != nil { log.Fatal("Failed to run the machine ", err) } //反向传播算法更新参数 if err = sgdSolver.Step(gorgonia.NodesToValueGrads(w0, w1, b0, b1)); err != nil { log.Fatal("Failed to update parameters ", err) } loss += lossVal.Data().(float64) } fmt.Println("Epoch ", i+1, " completed. Loss = ", loss/float64(iterations)) } } ``` 4.预测结果 训练好模型之后,我们可以用它来预测手写数字图像所代表的数字。在本例中,我们将使用测试集中的图像进行预测,并将结果与实际值进行比较。 ```go //预测结果 func predict(model *gorgonia.ExprGraph, machine *gorgonia.VM, w0, w1, b0, b1 *gorgonia.Node, testData []*mnist.RawImage, testLabels []*mnist.RawImage) { var correct int for i, img := range testData { label := testLabels[i] inputVals := make([]float64, inputSize) idx := 0 for _, p := range img.Data { inputVals[idx] = float64(p) / 255.0 idx++ } inputs := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(1, inputSize), gorgonia.WithBacking(inputVals)) //前向传播 _, err := machine.RunAll() if err != nil { log.Fatal(err) } //获取预测值 maxVal := -math.MaxFloat64 maxIdx := -1 fmt.Print("Predicted: ") for j := 0; j < outputSize; j++ { val := output.Data().(tensor.Shape)[j] fmt.Print(val, " ") if val > maxVal { maxVal = val maxIdx = j } } fmt.Print(" Actual: ", label.Data[0], "\n") if maxIdx == int(label.Data[0]) { correct++ } } fmt.Println("Accuracy: ", float64(correct)/float64(len(testData))*100, "%") } ``` 5.完整代码 ```go package main import ( "fmt" "log" "math" "math/rand" "time" "gorgonia.org/gorgonia" "gorgonia.org/tensor" "github.com/petar/GoMNIST" ) var ( inputSize = 28 * 28 outputSize = 10 output *gorgonia.Node ) func buildModel(g *gorgonia.ExprGraph) (w0, w1, b0, b1 *gorgonia.Node) { input := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(-1, inputSize), gorgonia.WithName("x")) labels := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(-1, outputSize), gorgonia.WithName("y")) hiddenSize := 256 w0 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(inputSize, hiddenSize), gorgonia.WithName("w0")) w1 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(hiddenSize, outputSize), gorgonia.WithName("w1")) b0 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(1, hiddenSize), gorgonia.WithName("b0")) b1 = gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(1, outputSize), gorgonia.WithName("b1")) var h0, h1 *gorgonia.Node gorgonia.Mul(input, w0, &h0) gorgonia.Add(h0, b0, &h0) gorgonia.Rectify(h0) gorgonia.Mul(h0, w1, &h1) gorgonia.Add(h1, b1, &h1) gorgonia.SoftMax(h1) cost := gorgonia.Must(gorgonia.Neg(gorgonia.Must(gorgonia.Mean(gorgonia.Must(gorgonia.Sum(gorgonia.Must(gorgonia.HadamardProd(labels, gorgonia.Must(gorgonia.Log(h1)))))))))) gorgonia.Read(h1, &output) var loss *gorgonia.Node gorgonia.Mean(gorgonia.Must(gorgonia.Norm(gorgonia.Must(gorgonia.Sub(h1, labels)), 2)), &loss) if _, err := gorgonia.Grad(cost, w0, w1, b0, b1); err != nil { log.Fatal(err) } return w0, w1, b0, b1 } func trainModel(model *gorgonia.ExprGraph, machine *gorgonia.VM, w0, w1, b0, b1 *gorgonia.Node, trainData []*mnist.RawImage, trainLabels []*mnist.RawImage, batchSize int, epochs int) { var iterations = len(trainData) / batchSize var sgdSolver = &gorgonia.SGD{LearnerRate: 0.1} for i := 0; i < epochs; i++ { var loss float64 for j := 0; j < iterations; j++ { startIdx := j * batchSize endIdx := (j + 1) * batchSize if endIdx > len(trainData) { endIdx = len(trainData) } inputVals := make([]float64, (endIdx-startIdx)*inputSize) labelVals := make([]float64, (endIdx-startIdx)*outputSize) idx := 0 for k := startIdx; k < endIdx; k++ { img := trainData[k] label := trainLabels[k] for _, p := range img.Data { inputVals[idx] = float64(p) / 255.0 idx++ } for _, p := range label.Data { labelVals[idx-outputSize] = float64(p) idx++ } } inputs := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(endIdx-startIdx, inputSize), gorgonia.WithBacking(inputVals)) labels := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(endIdx-startIdx, outputSize), gorgonia.WithBacking(labelVals)) _, err := machine.RunAll() if err != nil { log.Fatal("Failed to run the machine ", err) } if err = sgdSolver.Step(gorgonia.NodesToValueGrads(w0, w1, b0, b1)); err != nil { log.Fatal("Failed to update parameters ", err) } loss += lossVal.Data().(float64) } fmt.Println("Epoch ", i+1, " completed. Loss = ", loss/float64(iterations)) } } func predict(model *gorgonia.ExprGraph, machine *gorgonia.VM, w0, w1, b0, b1 *gorgonia.Node, testData []*mnist.RawImage, testLabels []*mnist.RawImage) { var correct int for i, img := range testData { label := testLabels[i] inputVals := make([]float64, inputSize) idx := 0 for _, p := range img.Data { inputVals[idx] = float64(p) / 255.0 idx++ } inputs := gorgonia.NewMatrix(machine, tensor.Float64, gorgonia.WithShape(1, inputSize), gorgonia.WithBacking(inputVals)) _, err := machine.RunAll() if err != nil { log.Fatal(err) } maxVal := -math.MaxFloat64 maxIdx := -1 fmt.Print("Predicted: ") for j := 0; j < outputSize; j++ { val := output.Data().(tensor.Shape)[j] fmt.Print(val, " ")